MicroCore implementation and modularisation

uCore_Implementation.pdf

Simulator
Synthesizer

Architecture

ModelSim 5.3b (VHDL93 = 0, Explicit = 1)
Synplify 5.14

Alternative architectures have been realised using different vhdl-Files, which have

to be compiled/loaded depending on the design choices due to synthesiser
limitations. You have to take care of editing your own load/make file which tends to
be tool specific. The source files have been listed in compilation order.

1 VHDL Source files

Filename

Description

functions.vhd
constants.vhd

Packages used throughout the project.
Architecture parameters, general types and Instruction set

dstack.vhd Data Stack Entity including RAM model for stack RAM
alu.vhd Arithmetic-Logic Unit with pre-incrementing data memory access
alu3state ALU using 3state logic for the ALU input multiplexer. This may be more

efficient for some FPGA families.

data ram.vhd
syn_data ram.vhd

Asynchronous Data and Return Stack memory
Synchronous Data and Return Stack memory. Added in order to support
RAM blocks inside FPGAs. These tend to be synchronous RAMs.

rstack.vhd Return Stack Entity
program.vhd Generated by the cross-compiler from Forth source code. Depending on the
debug program.vhd | settings in the cross-compiler load file, this "program ROM" may either be

modeled as a ROM-array or as a big CASE construct.

sequencer.vhd

Instruction address generator

interrupt.vhd Interrupt conditioning
uBus.vhd Multiplexed uCore Bus
uBus3state.vhd uCore Bus using three-state buffers. This version may be more efficient to

implement depending on the FPGA family. Please note the "bus-holdoff"
signal TRI EN that has to be generated.

10.vhd uCore's memory mapped input and output. This entity also holds internal
registers which are addressed via memory mapped 1/0, e.g. the TASK
register

uCore.vhd Structure of uCore, technology independent

core.vhd Version with both program memory ROM and data memory RAM inside

bench.vhd the FPGA. CORE holds all technology and project dependent information

as e.g. pin assignments. BENCH is the matching test bench.

debug_centronics.vhd
debug core.vhd
debug rom.vhd
debug bench.vhd

Debug version of MicroCore. See text below for explanations on the debug
philosophy.

rom_ram_core.vhd
rom ram_bench.vhd

Version with external program ROM and external, asynchronous data stack
RAM.

rom_syn core.vhd
rom_syn_bench.vhd

Version with external program ROM and internal synchronous data
memory RAM for compilation into RAM blocks.

syn_core.vhd
syn bench.vhd

Version with both program memory ROM and synchronous data memory
RAM inside the FPGA. The latter uses RAM blocks if available.

MicroCore 1.10, 9-Feb-2003, ks

1 of 4

MicroCore implementation and modularisation uCore_ Implementation.pdf

2 Using synchronous block RAMs

Some FPGA families do have synchronous RAM blocks as a resource. SYN DATA RAM.VHD
can be used to model the RAM appropriately. There is a drawback though: Microcore has been
realised with asynchronous RAM in mind and no pipelining whatsoever, for the sake of simplicity.
Therefore, if you want to use synchronous RAM, you have to generate a clock signal that will
register the memory read address before the end of the uCore cycle proper. SYN CORE.VHD and
ROM_SYN CORE.VHD take care of that by using an external clock twice the uCore clock
frequency, operating the synchronous RAM blocks at twice the uCore frequency.

3 Using three-state drivers for busses/multiplexers

Three state busses can be used in FPGAs that have 3-state buffers available as a resource. A three
state implementation usually consumes considerably fewer resources. As a drawback, you have to
generate the TRI _EN signal (in the CORE entity), which in general can only be generated from the
delayed clock. TRI_EN is used to disable all 3-state buffers at the beginning of a new cycle in order
to make sure that no short circuit situations will occur due to different delays of the enable signals
of the 3-state buffers. Neither the synthesiser, nor the place&route tools will be able to realise this
delay precisely. In the present implementation, it is generated by routing the clock to an un-used
pad DELAY, whose input signal is used as the delayed clock signal. In real implementations this
may need some tweaking before final sign-off. During debugging, you may set TRI EN
permanently true.

4 Simple / extended Version

Depending on constants "tasks" and "locals" in CONSTANTS.VHD a "simple" or an "extended"
version of MicroCore will be realised. This has to be reflected in the test program generated for the
simulator using the cross-compiler. Different load files have been prepared: LOAD CORETEST.F
for the simple, LOAD CORETEST EXT.F for the extended version.

5 Observed realisability issues. XC4000 versus Virtex families.

First experiments indicate that the XC4000 as well as Spartan-families of Xilinx FPGAs are not
well suited for MicroCore. These families have routing problems and they may benefit from a
pipelined version of MircoCore, which would also better support synchronous RAM blocks. On the
other hand, even the smallest member of the Virtex family may be used to create an efficient 24-bit
version with ease.

6 Debug philosophy

The debug version of MicroCore uses a RAM as program memory. In addition, a debug interface
needs to be added (e.g. the Centronics port in debug_centronics.vhd) for control of the processor
and upload of the program. The debugger works in such a way that MicroCore is halted using the
CLK _EN signal while the content of the program memory RAM is altered. Afterwards, CLK _EN
is asserted again and MicroCore continues execution where it was halted without loss of state. That
way, "breakpoint tokens" may be shifted through the executable code under control of a debugger
on the host in order to realise a single-stepping emulator. Alternatively, MicroCore may be reset
after program load using control signals of the debug interface.

MicroCore 1.10, 9-Feb-2003, ks 2of4

MicroCore implementation and modularisation uCore_ Implementation.pdf

7 The Forth cross-compiler

Install Win32For

(e.g. from ftp://ftp.taygeta.com/pub/Forth/Compilers/native/windows/Win32For/W32for42.exe).
This is the base 4th system, which I used to realise the cross-compiler. Its advantage is that it is a
32-bit system, which makes scalability of microcore up to 32-bits easy. And it is public domain.

Its disadvantage is its enormous complexity. But for the cross-compiler I only used Standard 4th
words using Win32For as the development environment, which is pretty much obvious and self
explanatory. But I took full advantage of its inherent 32-bitness.

For simulation code generation, several load files have been prepared. These load files produce
code for a functional MicroCore test. These tests are comprehensive as far as the instruction
repertoire is concerned, but they do not test the proper functionality of neither interrupts nor the
trap mechanism. Modify the load files to adapt to different application needs.

When in Win32For, type
> include <full name of load_file>

This loads all necessary code and produces a VHDL output file that can be used in simulation.
After compilation, you will be in the Win32For system. Here you can call the dis-assembler e.g. to
show compiled code starting at hex address $102:

> hex 0102 disasm

which disassembles the code starting at program memory location $102, one line at a time for every
key stroke - you get out of it with either <cr> or <esc>. The variable EXPAND controls the dis-
assembler behaviour. EXPAND OFF (default) will display macros with their macro name.
EXPAND OFF will display every single opcode without reference to a generating macro.

But for the hardware development, optimisation is not needed. Please note that for testing purposes
EVERY opcode can be synthesised by delving into the "Assembler" using "{" and "}":

something and other code { LIT NONE MEM } more 4th code

This includes the opcode for LIT NONE MEM in the instruction stream. These "Assembler" words
are in a different context because otherwise, there would have been naming conflicts.

MicroCore 1.10, 9-Feb-2003, ks 3of4

MicroCore implementation and modularisation uCore_ Implementation.pdf

8 Cross-Compiler Source files

All cross compiler related files are in sub-directory "uForth"

Filename Description

constants.f Constants used globally

microcore.f the MicroCore cross-compiler

disasm.f the MicroCore dis-assembler

coretest.f test program for the simple kernel

coretest ext.f test program for the extended kernel

debugger.f test program for the debugger, including debug mirco kernel

load coretest.f load file for coretest.f

load coretest ext.f load file for coretest ext.f

load_debug.f load file for debugger.f

prolog case.vhd prolog and epilog files for generating vhdl code to model the cross
epilog case.vhd compiled executable as a big case statement

prolog rom.vhd prolog and epilog files for generating vhdl code to model the cross
epilog rom.vhd compiled executable as a ROM array.

MicroCore 1.10, 9-Feb-2003, ks 4 of 4

	VHDL Source files
	Using synchronous block RAMs
	Using three-state drivers for busses/multiplexers
	Simple / extended Version
	Observed realisability issues. XC4000 versus Virtex families.
	Debug philosophy
	The Forth cross-compiler
	Cross-Compiler Source files

