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MicroCore
a 

scalable,
dual Stack,

Harvard Processor
for embedded Control

that fits into FPGAs easily
Klaus.Schleisiek AT hamburg.de

Using an FPGA based simple and extensible processor core as the foundation of a system eventually
frees the programmer from the limitations of any static processor architecture, be it CISC, RISC,
WISC, FRISC or otherwise. No more programming around known hardware bugs. A choice can be
made as to whether a needed functionality should be implemented in hardware or software; simply,
the least complex, most energy efficient solution can be realised while working on a specific
application. Of course, using FPGAs is a hefty blow for MIPS ratings. But, building on an FPGA,
time critical and perhaps complex functions can be realised in hardware in exactly the way needed by
the application offloading the processor from sub-optimal inner software loops. 

The FPGA approach also makes the user independent from product discontinuity problems that haunt
the hi-rel industry since the dawn of the silicon age. Finally: putting the core into FPGAs puts an end
to one of the high-level programming language paradigms, namely the aspect of (hoped-for)
portability. Once I can realise my own instruction set, I am no longer confronted with the need to
port the application to any different architecture and henceforth, the only reason to adhere to a
conventional programming style is the need to find maintenance programmers. Remains the need for
a vendor independent hardware description language to be portable w.r.t. any specific FPGA vendor
and family. To date, MicroCore has been realised in VHDL, using the MTI simulator and the
Synplify and Leonardo synthesisers targeting Xilinx and Altera FPGAs. For clarity, VHDL
declarations are appended to this paper to define the basics of the MicroCore architecture. For more
and up-to-date information, please refer to "www.microcore.org".
 
MicroCore is not confined to executing Forth programs but it is rooted in the Forth virtual machine.
MicroCore has been designed to support Forth as its "Assembler". Support for local variables
(relative return-stack addressing) is cheap and seems to be all that is needed to soup up MicroCore
for C. Its fitness for Java needs to be explored.

Hamburg,  18-Nov-01.

Klaus Schleisiek
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1 Hardware Architecture

MicroCore is a dual-stack, Harvard architecture with three memory areas that can be accessed in
parallel: Data-stack (RAM), Data-memory and return-stack (RAM), and Program-memory (ROM).

The architecture diagram shows all busses that are needed.  Each entity generates its own control
signals from the current instruction INST and the STATUS register.

All instructions without exception are 8-bits wide, and they are stored in the program-memory ROM.
Due to the way literal values can be concatenated from sequences of literal instructions, all data-
paths and memories are scalable to any word width without any change in the object code as long as
the magnitude of the numbers processed are representable. In essence, on a given object code the
processor performs arithmetic modulo the synthesised data path width.

The data paths are made up of the data-stack Dstack, the ALU and of the data-memory and return-
stack Rstack as well as of uBus, the registers NOS (Next-Of-Stack) and TOS (Top-Of-Stack), that
are in between the data-stack and the ALU, and the ioBus. 

The data-stack is realised by a RAM used as Stack under control of the Data-Stack-Pointer DSP, and
the two topmost stack items are held in registers NOS and TOS. Most often the size of the Stack
Memory needed will be small enough to fit inside the FPGA.

IO is data-memory mapped and the most significant address bit selects the outer world when set.
When not set, it selects data-memory and return-stack RAM. The return-stack occupies the upper end
of Data Memory under control of Return-Stack-Pointer RSP.

The Sequencer generates the Program Memory address for the next instruction, which can have a
number of sources:

• The Program Counter PC for a sequential instruction,

• the ALU for a relative branch or call,

• the TOS register for an absolute branch or call,

• the Data Memory for a return instruction,

• the fixed Interrupt Service Routine address ISR as part of an interrupt acknowledge cycle, or

• the fixed Trap Service Routine address TSR for the IOTRAP trap signal or the PAUSE
instruction.

The STATUS register has been shown as a separate entity. In the code however, it is composed of
status bits generated from several sources and therefore, it is spread across the entire design as stBus.

The Interrupt Processing unit takes care of synchronising and masking a scalable number of static
external interrupt sources.

Both, instruction decoding and status register bit processing has been decentralised because it makes
the code easier to understand, maintain, modify, and extend.
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2 Instruction Architecture

Each instruction is always 8 bits wide. Scalability is achieved on the object code level because all
literal values are composed from literal instructions that can be concatenated. Refer to [3 instruction
structures] for a discussion of the literal representation used, which is characterised by its "prefix"
nature dubbed "Vertical instruction set with literal prefixes" in the paper. To my knowledge, this type
of code has been invented by David May for the Transputer.

It has two advantages and one drawback compared to other instruction set structures:

Each instruction is "self contained" and therefore, this type of code can be interrupted between any
two instructions, simplifying interrupt hardware and minimising interrupt latency to the max.

Long literals can be composed of a sequence of literal instructions that are concatenated in the TOS
register. Therefore, this type of instruction architecture is independent of the data-word width.

Prefix code has the highest instruction fetch rate compared to the two other instruction types
discussed in the paper. Therefore, it is not really the technology of choice for demanding real-time
applications. A way out would be to fetch several instructions per memory access but that
introduces unpleasant complexity for branch destinations.

Keeping in mind that MicroCore is about putting a very simple and small processor core into FPGAs
for simple, embedded control, the latter drawback is tolerable because the instruction fetch delay,
even using external ROM, will hardly dominate total processor delay because all processor logic will
be contained in an FPGA and therefore, it will be substantially slower than an ASIC implementation
anyway.

The instruction
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2.1 Lit/Op Bit

1: 7-bit Literal (signed)
0: 7-bit Opcode

The Lit/Op field is a semantic switch: 

When set, the remaining 7 bits are interpreted as a literal nibble and transferred to the Top-of-Stack
(TOS) register. When the previous instruction had been an opcode, the literal nibble is sign-
extended and pushed on the stack. If its predecessor was a literal nibble as well, the 7 bits are
shifted into TOS from the right. Therefore, the number of literal nibbles needed to represent a
number depends on its absolute magnitude.

When not set, the remaining 7 bits are interpreted as an opcode. Opcodes are composed of three sub-
fields whose semantics are almost orthogonal: Type, Stack, and Group. Not all possible bit combi-
nations of these fields have a meaningful semantic easing instruction decoding complexity. 
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2.2 Type field

Code Name Action
00 BRA Branches, Calls and Returns
01 ALU Binary and Unary Operators
10 MEM Data-Memory and Register access
11 USR Not used by core, free for user extensions

BRAnches are conditioned by the group field and they consume the content of TOS, using either
TOS or TOS+PC as destination address. Although elegant, the fact that each branch has to pop the
stack to get rid of the destination address makes the implementation of Forth's IF, WHILE, and
UNTIL complicated. (N.B. This has been the most challenging problem for the Forth cross-
compiler). Calls push the content of the PC on the return-stack while branching. Returns pop the
return-stack using it as the address of the next instruction. 

ALU instructions use the stack as source and destination for arithmetic operations. Unary operations
only use TOS, binary operations use TOS and Next-of-Stack (NOS) storing the result in TOS.

MEMory instructions refer to the data memory when the most significant bit of TOS, which holds the
address, is not set. When set, it refers to input/output operations with the outer world. The return-
stack occupies the upper end of data-memory. Eight registers can be accessed directly using the
Group field.

32 USeR instructions are free for any application specific functions, which are needed to achieve
total system throughput.
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2.3 Stack field

Code Name Action
00 NONE Type dependent
01 POP Stack->NOS->TOS
10 PUSH TOS->NOS->Stack
11 BOTH Type dependent

POP pops and PUSH pushes the data stack. The stack semantics of the remaining states NONE and
BOTH depend on type and on external signals INT_IN and IOTRAP. This is where the opcode fields
are non-orthogonal creating instruction decoding complexity, which is gracefully hidden by the
synthesiser.

2.4 Group field

The semantics of the group field depend on the type field and in the case of ALU also on the stack
field. 

Of the binary operators NOS is used to realise SWAP and OVER. 

Unary operations are detailed below. 

Of the conditions, NEVER is used to realise NOP, DUP and DROP. NZERO supports the use of the
Top-Of-Return-stack as a loop index. PAUSE and INT are conditions to aid in processing external
events INT_IN and IOTRAP.

Of the registers, TOR is used to implement R@, whereas RSTACK implements >R and R>.

3 Instruction Semantics

In the following tables the LIT-field is marked with - and +. 

This indicates the following two cases:
‘-’: The previous instruction has also been an opcode; TOS holds the top-of-stack value.
‘+’: The previous instruction(s) have been literals; TOS holds a "fresh" literal value.

Code Binary-Ops
ALU

Unary-Ops
ALU

Conditions
BRA

Registers
MEM

000 ADD NOT NEVER STATUS
001 ADC SL ZERO TOR
010 SUB ASR NSIGN RSTACK
011 SBC LSR NCARRY LOCAL
100 AND ROR PAUSE RSP
101 OR ROL INT DSP
110 XOR ZEQU NZERO TASK
111 NOS CC ALWAYS FLAGS / IE
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3.1 BRA instructions

LIT Stack act Operation Forth operators / phrases
* none none conditional return from subroutine

When Cond=ZERO or NZERO
Stack -> NOS -> TOS
When Cond=INT
Stack -> NOS -> TOS -> STATUS

EXIT NOP
IRET
?EXIT
0=EXIT

- pop conditional branch to Program[TOS]
Stack -> NOS -> TOS

absolute_BRANCH
DROP

+ pop conditional branch to Program[PC+TOS]
Stack -> NOS -> TOS

relative_BRANCH

* push TOS -> TOS -> NOS -> Stack DUP
- both pop

push
conditional call to Program[TOS]
Stack -> NOS -> TOS
Except when Cond=INT or PAUSE
Call to Program[ISR] or Program[TSR]
STATUS -> TOS -> NOS -> Stack

absolute_CALL

INTERRUPT
PAUSE

+ both pop
push

conditional call to Program[PC+TOS]
Stack -> NOS -> TOS 
Except when Cond=INT or PAUSE
Call to Program[ISR] or Program[TSR]
STATUS -> TOS -> NOS -> Stack

relative_CALL

INTERRUPT
PAUSE

3.2 ALU instructions

Stack act Operation Forth operators / phrases
none none NOS <op> TOS -> TOS OVER_SWAP_- SWAP
pop Stack -> NOS <op> TOS -> TOS + - AND OR XOR DROP
push NOS <op> TOS -> TOS

                  TOS -> NOS -> Stack
2DUP_+ OVER

both none TOS <uop> -> TOS 0= 2* ROR ROL 2/ u2/

3.3 MEM instructions

Stack act Operation Forth operators / phrases
none pop Stack -> NOS -> TOS -> Register

LOCAL := Stack -> NOS -> Data[RSP+TOS]
TASK    := Stack -> NOS -> Data[TASK+TOS]

>R
store into local variables
store into task variables

pop Stack -> NOS -> Data[TOS+<inc>]
TOS + <inc> -> TOS

++! pre-incrementing data
memory or I/O store

push Data[TOS+<inc>] -> NOS -> Stack
TOS + <inc> -> TOS

++@ pre-incrementing data
memory or I/O fetch

both push Register -> TOS -> NOS -> Stack
LOCAL := Data[RSP+TOS] -> NOS -> Stack
TASK := Data[TASK+TOS] -> NOS -> Stack

R@, R> 
fetch from local variables
fetch from task variables
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4 Basic Forth Operations

A single instruction is composed of a triple of a type, stack, and group mnemonic. The following
table lists often used Forth atoms and their realisation using the MicroCore instruction architecture.

Forth LIT Implementation Remarks
NOP - BRA NONE NEVER
>R - MEM NONE RSTACK
R> - MEM BOTH RSTACK
R@ - MEM BOTH TOR
DUP - BRA PUSH NEVER
DROP - BRA POP NEVER
SWAP - ALU NONE NOS
OVER - ALU PUSH NOS
N ++@ - MEM PUSH N, pre-increment N = signed 3-bit number
@ x MEM PUSH 0   ALU POP NOS 2-cycle
N ++! - MEM POP N, pre-increment N = signed 3-bit number
! x MEM POP 0     ALU POP NOS 2-cycle
+ - ALU POP ADD
- - ALU POP SUB
AND - ALU POP AND
OR - ALU POP OR
XOR - ALU POP XOR
INVERT - ALU BOTH NOT
2* - ALU BOTH SL
2/ - ALU BOTH ASR
u2/ - ALU BOTH LSR
CALL + BRA BOTH ALWAYS absolute 3-cycle, relative 2-cycle
EXIT - BRA NONE ALWAYS
?EXIT - BRA NONE ZERO
BRANCH + BRA POP ALWAYS absolute 3-cycle, relative 2-cycle
?BRANCH + BRA POP ZERO     ALU POP NOS additional DROP needed in both

cases for Forth's IF
NEXT + BRA POP NZERO used for FOR ... NEXT loop
LITERAL + no additional instruction needed, just

loading LIT-nibbles in succession.
When LIT=0 a Literal-nibble triggers a
PUSH operation and initialises TOS.
When LIT=1, the Literal-nibble is shifted
into TOS.

#-cycles depending on its
magnitude - fragmented into 7-bit
nibbles

1+ 1 ALU NONE ADD 2-cycle
1- -1 ALU NONE ADD 2-cycle
0= - ALU BOTH ZEQU
= - ALU POP SUB   ALU BOTH ZEQU 2-cycle

Now we have about 30 meaningful Forth instructions and many opportunities for peephole
optimisation across the two preceding instructions (in order to detect e.g. "OVER OVER <op>"). In
addition, there are additional useful opcodes like NC-BRANCH and NS-BRANCH, which are
usually not present in Forth.
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5 Core Registers

5.1 STATUS

Bit Name Access Description
0 C R/W The Carry-Flag reflects the result of the most recent ADD, SUB, ADC, SBC,

SL, ASR, LSR, ROR, and ROL instructions. On subtraction, it is the
complement of the borrow bit.

1 IE R/W Interrupt-Enable-Flag
2 IIS R/W The Interrupt-In-Service-Flag is set at the beginning of an interrupt-

acknowledge cycle. It is reset by the IRET (Interrupt-RETurn) instruction.
When IIS is set, interrupts are disabled. When the Status-register is read, IIS
always reads as '0'.

3 LIT R The LITeral-Status-Flag reflects the most significant bit of the previous
instruction.

4 N R The Negative-Flag reflects the content of the most-significant-bit of TOS or of
NOS when LIT=1

5 Z R The Zero-Flag reflects the content of TOS or of NOS when LIT=1

Z and N reflect the actual state of the top "number" on the stack. This may be in TOS (when LIT=0)
or in NOS (when LIT=1) because e.g. a target address may be in TOS.

For the ordering of the bits it has been taken into consideration that "masks" for masking off flags
can be loaded with only one literal nibble. This is important for the C- and IE-flags, see below.

5.2 TOR

Top-Of-Return-stack. This allows access to the return-stack without pushing or popping it. 

5.3 RSTACK

Return-STACK. When RSTACK is used as a destination, a return-stack push is performed. When it
is used as a source, a return-stack pop is performed.

5.4 LOCAL

This register-addressing mode (MEM NONE LOCAL and MEM BOTH LOCAL) is included in
order to support C and its local local variable mentality. These can be placed in a return-stack frame.
The actual data memory address is the sum of RSP+TOS and this "addressing mode" is the only
method for access into the return-stack, because its address range doubles as memory mapped I/O.

5.5 DSP

Data-Stack-Pointer. It is used to implement the data-stack and it can be read and written to support
multitasking.
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5.6 RSP

Return-Stack-Pointer. It is used to implement the return-stack that is located at the upper end of the
data memory and it can be read and written to support multitasking and stack-frame linkage.

5.7 FLAGS (read) / IE (write)

This is a pair of registers – FLAGS for reading, IE (Interrupt Enable) for writing.

An interrupt condition exists as long as any bit in FLAGS is set whose corresponding bit in IE has
been set previously. Interrupt processing will be performed when the processor is not already
executing an interrupt (IIS-status-bit not set) and interrupts are enabled (IE-status-bit set).

Typically at the beginning of interrupt processing (after calling the hard-wired interrupt handler
address ISR) the FLAGS-register will be read. One specific bit is associated with each potential
interrupt source. When a certain interrupt has been asserted, its associated bit will be set. All
interrupts are static and therefore, it is the responsibility of the interrupt service routine (ISR) of a
specific interrupt to reset the interrupt signal of the external hardware before the end of the ISR.

IE (Interrupt Enable) is a register, which can only be written, and it holds one enable bit for each
interrupt source. Setting or resetting interrupt enable bits is done in a peculiar way, which could be
called "bit-wise writing":

When IE is written, the least significant bit determines whether individual IE-bits will be set ('1') or
reset ('0'). All other bits written to IE select those enable bits, which will be affected by the write
operation. Those bits that are set ('1') will be written to, those bits that are not set ('0') will not be
changed at all. This way individual interrupt enable bits may be changed in a single cycle without
affecting other IE-bits and without the need to use a "shadow variable".

5.8 TASK

The TASK register can be read and written via memory mapped I/O (address = -1). It holds an
address that points at the Task Description Block (TDB) of the active task. The implementation of
the multitasking mechanism is operating system dependent. Variables that are local to a task can be
accessed via the MEM NONE TASK (store) and MEM BOTH TASK (fetch) instructions. It works
similar to ++@ and ++!. However, the data memory address is the sum of TASK+TOS.

If the TASK register is not used for multitasking support, it constitutes a general base register for a
pre-incrementing base-offset addressing mode.
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6 Unary operations

SL 0 -> LSB, MSB -> C

ASR MSB -> MSB-1, LSB -> C

LSR 0 -> MSB, LSB -> C

ROR C -> MSB, LSB -> C

ROL C -> LSB, MSB -> C

ZEQU When TOS=0, TOS <- -1 otherwise TOS <- 0
(A "luxury", because it can be synthesised using the ?BRANCH instruction but it is an often used
instruction in condition flag computations)

CC ComplementCarry   Carry <- not Carry

7 Booting

Given MicroCore's hardware architecture, this is a very simple:

A RESET signal resets all registers to zero. Because the code for a NOP { BRA NONE NEVER }
happens to be all zeros, the processor just fetches the instruction pointed to by the PC register (which
had also been reset to zero) in the first cycle. Therefore, the reset vector happens to be at memory
address zero. 

8 Interrupts

8.1 The Interrupt Mechanism

At first, interrupt requests are synchronised.
In the succeeding cycle(s) the following mechanism will unfold by hardware design:

1st cycle:

The current program memory address will be loaded into the PC un-incremented.

The instruction BRA BOTH INT will be loaded into the INST register instead of the output of the
program memory. 

2nd cycle:

Now, BRA BOTH INT will be executed that performs a CALL to the ISR-address, which is a
constant address, selected by the program address multiplexer and STATUS is pushed on the data
stack at the same time.

Therefore, only the first INT-cycle must be performed by special hardware. The second cycle (INT-
instruction) is executed by an instruction that is forced into the INST register during the first
Interrupt acknowledge cycle.
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8.2 Handling Multiple Interrupt Sources

Whenever an interrupt source whose corresponding interrupt enable bit is set in the IE-register is
asserted its associated bit in the FLAGS-register will be set and an interrupt condition exists. An
interrupt acknowledge cycle will be executed when the processor is not currently executing an
interrupt (IIS-bit not set) and interrupts are globally enabled (IE-bit of the STATUS-register set).
 
Please note that neither the call to the ISR-address nor reading the FLAGS-register will clear the
FLAGS register. It is the responsibility of each single interrupt server to reset its interrupt signal in
the external hardware as part of its interrupt service routine.

9 Multitasking

The transputer has been a very innovative processor, which focused on multitasking that was entirely
realised in hardware. Nice as this feature and the underlying philosophy of its programming language
Occam may be, it crippled the transputer for traditional programming languages. This in turn did
make the transputer difficult to understand and market. It never became really popular although its
users were happy with it.

Nevertheless, hardware support for multitasking seems to be an attractive feature greatly simplifying
software engineering for complex systems. Analysing the real needs w.r.t. multitasking support it
occurred to me that a full-blown task switch mechanism in hardware is not really needed. Instead, a
mechanism that would allow to access resources that may not be ready yet using fetch and store
without the need to explicitly query associated status flags beforehand is all that is needed to hide
multitasking pains from the application programmer.

Therefore, MicroCore has a PAUSE instruction and a TRAP mechanism to support multitasking or,
to be less ambitious, to deal with busy resources. Fortunately, it turned out that the implementation of
this mechanism in MicroCore comes almost for free and therefore, it is build into the core from the
very beginning. If not used for multitasking, it is a nice basis for a breakpoint debugger.

9.1 TRAP signal

An additional external control signal has been added: TRAP. When the processor intends to access a
resource, the resource may not be ready yet. In such an event, it can assert the TRAP signal before
the end of the current execution cycle (before the rising CLK edge). This disables latching of the next
processor state in all registers but the INST register that loads the PAUSE instruction (BRA BOTH
PAUSE) instead of the next instruction from program memory. 

In the next processor cycle, BRA BOTH PAUSE will be executed calling the TSR-address (Task
Service Routine). Similar to an interrupt, the STATUS register is pushed on the data stack at the
same time. 

The TSR-address will typically hold a branch to code, which will perform a task switch depending on
the operating system. Please note that the return address pushed on the return-stack is the address of
the instruction following the one that caused the TRAP. Therefore, before re-activating the trapped
task again, the return address on the return-stack must  be decremented by one prior to executing the
IRET instruction (BRA NONE INT) in order to re-execute the instruction, which caused the trap
previously. Please note that no other parameter reconstruction operation prior to re-execution has to
be made because the TRAP cycle fully preserves all registers but the INST register.
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The TRAP mechanism is independent from the interrupt mechanism. It adds one cycle of delay to an
interrupt acknowledge when both an interrupt request and a TRAP signal coincide.

In essence, the TRAP mechanism allows to access external resources without having to query status
bits to ascertain the availability/readiness of a resource. This greatly simplifies the software needed
for e.g. serial channels for communicating with external devices or processes.

 
10 Data Memory Access

On a data memory access, TOS holds the base address and NOS holds/receives the value to be
exchanged with memory. Pre-incrementing access operators ++@ and ++! have been defined for a
pre-incrementing implementation. The group field is used as a signed increment spanning the range
from -4 .. 3 and after the memory access, the incremented address remains in TOS.

Alternatively, relative addressing into the return-stack may be used using the LOCAL "register". The
actual memory address is the output of the ALU-adder, adding the offset in TOS and the RSP. After
the memory access, TOS holds the physical address (pointer) of the memory access. As a further
alternative, relative addressing into the data memory can be performed relative to the TASK register
that points to the beginning of a block of memory that may e.g. hold variables that are local to a task.

11 Software Development

An interactive software development environment for MicroCore is rather straightforward and in
essence, it has been realised before when I worked on the IX1 field bus processor.

A "debuggable MicroCore" has an additional Centronics interface, which connects to a PC serving as
the host. (Yes, I know, a USB port would have been more appropriate nowadays..) The program
memory, which must be realised as a RAM, can be loaded across this interface. After loading the
application, a very simple debug kernel takes control exchanging messages with a host computer.

11.1 Forth Cross-Compiler

It loads on top of Win32Forth because that is a free 32-bit system. It produces a binary image for the
program memory as well as a VHDL file, which behaves as the program memory in a VHDL
simulation. (Please note that the cross-compiler is implemented in such a way that it only supports
literals up to 31 bits signed magnitude.)
 
It is a short but rather complex piece of code and my 4th iteration on implementing a Forth cross-
compiler in Forth. 

The most challenging aspect was compiling MicroCore's branches, which, as relative branches, are
preceded by a variable number of literal nibbles. The cross-compiler at first tries to get away with
one literal nibble for the branch offset. If it turns out that this is not sufficient space for the branch
offset at the closing ELSE, THEN, UNTIL, or REPEAT, the source code is re-interpreted again,
leaving space for the required number of literal nibbles in front of the branch opcode.

Another challenge is compiling Forth's IF, WHILE, and UNTIL because, after the branch, you still
have the flag dangling on the stack. Therefore, a DROP has to be inserted after the IF and the THEN
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in an IF ... THEN phrase. There's still a lot of room for optimisations and the compiled code
sometimes looks sub-optimal with sequences of DUP DROP sprinkled across the code as an
indication of a BEGIN ... UNTIL backward branching loops.

11.2 C Cross-Compiler

A first implementation has been realised for an earlier version of MicroCore at the technical
university of Brugg/Windisch, Switzerland. The compiler is based on the LCC compiler, and a
MicroCore back-end was created that takes the syntax tree as input.

It turned out that the LOCAL addressing mode is all that is needed to come to grips with C's local
variable mentality. Actually, the LOCAL addressing mode does not really add any additional
functionality to the core but it is a mechanism to come to grips with state-of-the-art C-compiler
technology. The LOCAL addressing mode with its additional hardware consumption could go away
as soon as an optimiser has been realised that is capable of transforming local variable accesses into
appropriate data-stack manipulations.

12 Project Status

The VHDL code has been released. The identical code could be synthesised using the Synplify and
the Leonardo synthesisers targeting Xilinx and Altera FPGAs. A simulator based on C code is in a
prototype stage

Implementation experiments on Xilinx XC4000/Spartan devices reveal routing difficulties. But
MicroCore can be easily realised on the Virtex family. Here are some implementation results for the
Xilinx XCV50-4. This includes synthesis and place&route. Please note that the architecture is fully
scalable: Any data word width you like - but less than 12 bits does not make sense. For the synthesis
example, MicroCore has been compiled for an internal data-stack 16 elements deep, a return-stack
256 elements deep, an external program ROM and an external data memory RAM and two interrupt
sources. Most examples are for multiplexed busses. To compute maximum clock frequency, add
worst case access delay of your RAM and ROM to the specified delay predictions of the synthesiser.
The synthesis result is for minimal gate count and no timing optimisation. 

The Forth cross-compiler is operational for up to 31 bit signed literals. It’s already of production
quality. Some more effort could be spent on peephole optimisations.

The C cross-compiler is in a prototype stage producing code for an obsolete version. Another design
iteration is needed.

A debug interface for MicroCore based on a Centronics port exists. It can be used as a model for a
USB interface implementation.

data path RAM  ROM
width size size % used delay [ns] % used delay [ns]

12 2k 4k 33 40.0 36 48.0
16 32k 64k 40 39.0 45 53.0

16 tri_state 32k 64k 34 46.0 39 57.0
24 64k 64k 51 44.0 55 58.0
24 1M 2M 53 42.0 58 55.0
32 1M 2M 64 44.5 69 60.0

32 tri_state 1M 2M 54 50.0 61 62.0

simple extended
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The interactive debugger itself on the host PC has not been started yet but its basic design will be
ported from the IX1 design environment.

A prototyping board has been built in the framework of another research project and awaits the first
actual implementation of MicroCore. Forth Gesellschaft eV is prepared to finance a small
prototyping board for a 16-bit model implementation with a USB port as debug interface.

13 Legal Issues

I have applied for a patent for the MicroCore architecture. This is not because I want to restrict
access, but because I want to remain in control of it.

Since the world does not wait for yet another processor architecture, I figured that I might as well
give it away for free. Therefore, MicroCore should be used in the spirit of the licensing terms of the
Free Software Foundation applied to a hardware design. Actually, the terms of the MicroCore license
are even more liberal than the GPL terms. The only right I reserve for myself is the exclusive right to
appoint institutions that may verify conformance of derived work with the original MicroCore model.

"Open" or "Free" Software is about – well – software. MicroCore is hardware. What's the difference?
The protection and control that the Free Software Foundation is able to exert on the use of its
material is based on copyright protection. This gives the foundation enough power to save e.g. GNU
from microsoftisation, i.e. subtle changes that will make it incompatible with the original. GNU,
Linux and the rest is such an immense heap of uniquely concatenated characters that it is next to
impossible to realise something close but incompatible, which would not infringe copyright. 

The situation for MicroCore is radically different: As the name implies, it is simple. Once you have
explained the architecture and instruction set to an experienced VHDL programmer, he will come up
with an original implementation in three months or less without infringing on the copyright of the
original VHDL model. This is why I have applied for patent protection. 

When MicroCore catches on, I am prepared to transfer the patent rights to a public, non-profit
organisation. 
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15 MicroCore Basics in VHDL

-------------------------------------------------------------------
-- microcore bus widths
-------------------------------------------------------------------

CONSTANT data_width       : NATURAL := 12; -- from 12 .. 32 or more
CONSTANT inst_width       : NATURAL :=  8;
CONSTANT data_addr_width  : NATURAL := 11; -- "top" half address space is I/O
CONSTANT prog_addr_width  : NATURAL := 12;
CONSTANT ds_addr_width    : NATURAL :=  4;
CONSTANT rs_addr_width    : NATURAL :=  4;
CONSTANT interrupts       : NATURAL :=  2;

--------------------------------------------------------------------------
-- microcore busses
--------------------------------------------------------------------------

SUBTYPE data_bus      IS std_logic_vector(data_width-1 DOWNTO 0);
SUBTYPE inst_bus      IS std_logic_vector(inst_width-1 DOWNTO 0);
SUBTYPE data_addr     IS std_logic_vector(data_addr_width-1 DOWNTO 0);
SUBTYPE prog_addr     IS std_logic_vector(prog_addr_width-1 DOWNTO 0);
SUBTYPE ds_addr       IS std_logic_vector(ds_addr_width-1 DOWNTO 0);
SUBTYPE rs_addr       IS std_logic_vector(rs_addr_width-1 DOWNTO 0);
SUBTYPE int_bus       IS std_logic_vector(interrupts-1 DOWNTO 0);

--------------------------------------------------------------------------
-- status register
--------------------------------------------------------------------------

CONSTANT s_c_bit      : NATURAL :=  0;  -- carry bit
CONSTANT s_ie_bit     : NATURAL :=  1;  -- Interrupt Enable bit
CONSTANT s_iis_bit    : NATURAL :=  2;  -- InterruptInService bit 
CONSTANT s_lit_bit    : NATURAL :=  3;  -- LIT bit of the previous instruction
CONSTANT s_n_bit      : NATURAL :=  4;  -- Sign-bit of top data element (TOS or sometimes NOS)
CONSTANT s_z_bit      : NATURAL :=  5;  -- Zero-bit of top data element (TOS or sometimes NOS)
CONSTANT status_width : NATURAL :=  6;

--------------------------------------------------------------------------
-- physical addresses
--------------------------------------------------------------------------

CONSTANT addr_isr : std_logic_vector(3 DOWNTO 0) := "0100";
CONSTANT addr_tsr : std_logic_vector(3 DOWNTO 0) := "1000";

--------------------------------------------------------------------------
-- op codes
--                    TYPE
--------------------------------------------------------------------------

CONSTANT op_BRA    : std_logic_vector(1 DOWNTO 0) := "00";
CONSTANT op_ALU    : std_logic_vector(1 DOWNTO 0) := "01";
CONSTANT op_MEM    : std_logic_vector(1 DOWNTO 0) := "10";
CONSTANT op_USR    : std_logic_vector(1 DOWNTO 0) := "11";

--------------------------------------------------------------------------
--                    STACK
--------------------------------------------------------------------------

CONSTANT op_NONE   : std_logic_vector(1 DOWNTO 0) := "00";
CONSTANT op_POP    : std_logic_vector(1 DOWNTO 0) := "01";
CONSTANT op_PUSH   : std_logic_vector(1 DOWNTO 0) := "10";
CONSTANT op_BOTH   : std_logic_vector(1 DOWNTO 0) := "11";

--------------------------------------------------------------------------
--                    GROUP
--------------------------------------------------------------------------

CONSTANT op_ADD    : std_logic_vector(2 DOWNTO 0) := "000";
CONSTANT op_ADC    : std_logic_vector(2 DOWNTO 0) := "001";
CONSTANT op_SUB    : std_logic_vector(2 DOWNTO 0) := "010";
CONSTANT op_SBC    : std_logic_vector(2 DOWNTO 0) := "011";
CONSTANT op_AND    : std_logic_vector(2 DOWNTO 0) := "100";
CONSTANT op_OR     : std_logic_vector(2 DOWNTO 0) := "101";
CONSTANT op_XOR    : std_logic_vector(2 DOWNTO 0) := "110";
CONSTANT op_NOS    : std_logic_vector(2 DOWNTO 0) := "111";
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CONSTANT op_NOT    : std_logic_vector(2 DOWNTO 0) := "000";
CONSTANT op_SL     : std_logic_vector(2 DOWNTO 0) := "001";
CONSTANT op_ASR    : std_logic_vector(2 DOWNTO 0) := "010";
CONSTANT op_LSR    : std_logic_vector(2 DOWNTO 0) := "011";
CONSTANT op_ROR    : std_logic_vector(2 DOWNTO 0) := "100";
CONSTANT op_ROL    : std_logic_vector(2 DOWNTO 0) := "101";
CONSTANT op_ZEQU   : std_logic_vector(2 DOWNTO 0) := "110";
CONSTANT op_CC     : std_logic_vector(2 DOWNTO 0) := "111";

CONSTANT op_NEVER  : std_logic_vector(2 DOWNTO 0) := "000";
CONSTANT op_ZERO   : std_logic_vector(2 DOWNTO 0) := "001";
CONSTANT op_NSIGN  : std_logic_vector(2 DOWNTO 0) := "010";
CONSTANT op_NCARRY : std_logic_vector(2 DOWNTO 0) := "011";
CONSTANT op_PAUSE  : std_logic_vector(2 DOWNTO 0) := "100";
CONSTANT op_INT    : std_logic_vector(2 DOWNTO 0) := "101";
CONSTANT op_NZERO  : std_logic_vector(2 DOWNTO 0) := "110";
CONSTANT op_ALWAYS : std_logic_vector(2 DOWNTO 0) := "111";

CONSTANT op_STATUS : std_logic_vector(2 DOWNTO 0) := "000";
CONSTANT op_TOR    : std_logic_vector(2 DOWNTO 0) := "001";
CONSTANT op_RSTACK : std_logic_vector(2 DOWNTO 0) := "010";
CONSTANT op_LOCAL  : std_logic_vector(2 DOWNTO 0) := "011";
CONSTANT op_RSP    : std_logic_vector(2 DOWNTO 0) := "100";
CONSTANT op_DSP    : std_logic_vector(2 DOWNTO 0) := "101";
CONSTANT op_TASK   : std_logic_vector(2 DOWNTO 0) := "110";
CONSTANT op_FLAGS  : std_logic_vector(2 DOWNTO 0) := "111";
CONSTANT op_IE     : std_logic_vector(2 DOWNTO 0) := "111";

--------------------------------------------------------------------------
--  some instructions needed as constants
--------------------------------------------------------------------------

CONSTANT NO_OP     : inst_bus := '0' & op_BRA & op_NONE & op_NEVER;
CONSTANT INT_OP    : inst_bus := '0' & op_BRA & op_BOTH & op_INT;
CONSTANT PAUSE_OP  : inst_bus := '0' & op_BRA & op_BOTH & op_PAUSE;
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